6,163,776

1

SYSTEM AND METHOD FOR EXCHANGING
DATA AND COMMANDS BETWEEN AN
OBJECT ORIENTED SYSTEM AND
RELATIONAL SYSTEM

This application contains a Microfiche Appendix con-
sisting of one (1) slide and 30 frames.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to systems and
methods for transferring data and commands between com-
puting systems. In particular, the present invention relates to
a system and a method for exchanging data and commands
between an object oriented system and a relational system.

2. Description of the Background Art

With the development and proliferation of computers of
increasing performance capability, a number of different
languages and programming paradigms have been devel-
oped. These languages and programming paradigms are
used in conjunction with data that can be stored persistently
in a variety of different ways. For example, options for
persistent storage include relational databases, file systems
and object-oriented databases.

Most data has been stored in a relational format such as
in tables of a relational database. The data is manipulated
and maintained by a relational database management system
(RDBMS). One particularly attractive attribute of such rela-
tional systems is that RDBMSs are able to persistently store
data. Relational systems are persistent in the sense that the
data is stored in a stable storage environment such that the
data is accessible even after the application that created the
original data stops executing. Furthermore, there are a
number of applications and tools available for the manipu-
lation and maintenance of such data in relational databases.
Since relational databases have been in existence for many
years, the use and proliferation of such applications and
tools are widespread, and sophistication and capabilities of
the tools are great.

However, a new programming paradigm that has become
more widespread in recent years is object-oriented program-
ming (OOP). In fact, OOP is becoming the dominant pro-
gramming paradigm with the development and widespread
use of new programming languages such as JAVA and C++.
In OOP, a class is used to encapsulate the structure and
behavior of objects. Thus, the objects contain both the data
and the functionality for manipulation of the data.

It is very natural and desirable for application developers
to represent the business objects in an object-oriented lan-
guage like Java and at the same time use RDBMS for the
persistence storage of those objects.

One problem existing in the art is that there are no systems
and methods to bridge the gap between the programming
paradigm used for object-oriented systems and the program-
ming paradigm used for relational systems. There are also no
systems and methods for bridging the gap between the
languages used for object-oriented systems such as Java and
the languages used in relational systems such as SQL.
Furthermore, there is no easy method for specifying the
mapping between such object-oriented systems and rela-
tional systems. Thus, to perform translation between these
systems has required hand coding of the mapping between
object-oriented systems and relational systems, and hand
coding is tedious, time-consuming, error-prone and tends to
be non-uniform. Therefore, there is a need for systems and

10

15

20

25

35

40

45

50

55

60

65

2

method for automatically translating and exchanging data
between object-oriented systems and relational systems.

The prior art has attempted to solve the problem with
graphical user interfaces that define mappings and by pro-
ducing proprietary platform specific code that will translate
between object-oriented systems and relational systems.
However, such prior art systems have the following short-
comings. First, they are not always able to create a relational
schema given an object model. Second, they are not always
able to produce an object model given a relational schema.
Third, they do not provide a uniform method for specifying
directed options for object graph specification for different
operations. Fourth, the prior art is not able to handle large
sets of queried objects by streaming them between different
tiers of applications. Thus, they are subject to memory
bandwidth and response-time performance problems.
Finally, such existing systems are coded for operation with
a particular RDBMS. Thus, they are not interoperable
among different relational back ends.

In object-oriented systems, when a new object is created
it is typically assigned an identification number that can
identify it uniquely among other objects of the same type. If
objects are stored persistently in a database, the identifica-
tion number assigned to a newly created object in memory
should be unique with respect to even the already stored
objects in the database. So there is a need for a system and
method having the ability to always provide a unique
number. The existing art has attempted to solve the problem
of providing unique identification numbers by providing the
notion of a unique row-id in the RDBMS, thereby assigning
a newly inserted row a unique number. However, the prior
art approach has a number of disadvantages. First, the
unique id is not known to the program until the object is
inserted in the database. So if the programmer has to create
related objects which need to know the unique ids for their
initialization, the current scheme would require an insert
operation and then a query operation to get the RDBMS
assigned unique id. This is inefficient and cumbersome.
Second, not all RDBMSs have the feature of unique row-ids,
thus, such systems in the prior art cannot generate unique
ids. Third, each RDBMS specifies its own unique way of
defining and retrieving these row ids. So the application
programmer cannot use a consistent and portable way of
defining, using and referring to the unique ids.

Therefore, because of the advantages offered by OOP and
the persistence of data offered by relational systems there is
aneed for a system that can easily be configured and that can
reliably and automatically transfer data between such rela-
tional systems and object-oriented systems.

SUMMARY OF THE INVENTION

The present invention overcomes the deficiencies and
limitations of the prior art with a system and methods for
exchanging data and commands between an object oriented
system and a relational system. In particular, the system of
the present invention comprises an Object-Relational
Mapping (ORM) grammar, an ORM specification, Object
Class Definitions, a relational database, an operating system,
a Database Exchange Unit including an OR mapping unit, a
schema generator, a schema reverse engineering unit and
applications. The ORM specification is based on the ORM
grammar and includes information for defining the mapping
between the object-oriented system and the relational sys-
tem. The Object Class Definitions define the object-oriented
system, and the relational database defines the relational
system. The Database Exchange Unit executes in accor-



